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Making Data Strutures Conuently PersistentAmos Fiat� Haim Kaplan�Reality is merely an illusion, albeit a very persistent one.| Albert Einstein (1875-1955)AbstratWe address a longstanding open problem of [10, 9℄, and present a general transformation that trans-forms any pointer based data struture to be onuently persistent. Suh transformations for fullypersistent data strutures are given in [10℄ , greatly improving the performane ompared to the naivesheme of simply opying the inputs. Unlike fully persistent data strutures, where both the naive shemeand the fully persistent sheme of [10℄ are feasible, we show that the naive sheme for onuently persis-tent data strutures is itself infeasible (requires exponential spae and time). Thus, prior to this paperthere was no feasible method for implementing onuently persistent data strutures at all. Our meth-ods give an exponential redution in spae and time ompared to the naive method, plaing onuentlypersistent data strutures in the realm of possibility.1 IntrodutionA data struture is alled persistent if it supports aess to multiple versions and it is alled ephemeralotherwise. The data struture is partially persistent if all versions an be aessed but only the newestversion an be modi�ed. The struture is fully persistent if every version an be both aessed and modi�ed.Sine the seminal paper of Drisoll, Sarnak, Sleator, and Tarjan (DSST) [10℄, and over the part �fteenyears, there has been onsiderable development of persistent data strutures. Persistent data strutureshave important appliations in various areas suh as funtional programming; text, program, and �le editingand maintenane; omputational geometry; and other algorithmi appliation areas. (See [3, 4, 5, 8, 9, 10,11, 12, 14, 22, 23, 24, 25℄.)DSST developed eÆient general methods to make pointer-based data strutures partially or fully per-sistent. These methods support updates that apply to a single version of a struture at a time, but theydo not aommodate operations that ombine two di�erent versions of a struture, suh as set union orlist atenation. We all an update operation that applies to more than a single version a meld operation.DSST posed as an open question whether there is a way to generalize their result to allow meld operations.Drisoll, Sleator, and Tarjan [9℄ oined the term onuently persistent for fully persistent strutures thatsupport suh meld operations.Muh work has been done on making spei� data strutures suh as atenable deques and atenable�nger searh trees onuently persistent (see [1, 9, 17, 16, 19, 21, 20, 15℄). Despite these results no progresshas been made on the problem of obtaining a general transformation that an make any pointer based datastruture onuently persistent.�Shool of omputer siene, Tel Aviv University, Tel Aviv 69978, ffiat,haimkg�math.tau.a.il1
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x=3Figure 1: A version tree of a fully persistent data struture
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Figure 2: A version DAG of a onuently persistent data struture
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In this paper we get bak to DSST's original question, whether one an �nd some general transformationthat would make any pointer based data struture that allows meld operations onuently persistent. Wepresent three general transformations that ahieve this goal. Our transformations di�er in their time andspae requirements as well as in their omplexity. We also prove a lower bound whih indiates how eÆientan we expet suh general transformation to be.It turns our that there is a fundamental di�erene between fully persistent and onuently persistentdata strutures. The fully persistent data strutures of [10℄ were designed to improve upon the naivesolution of simply opying the data struture before making any update operation. Certainly, the time/spaeimprovement of the tehniques in [10℄ over the naive solution are very impressive. However, in priniple, itis feasible to use the naive sheme as well (it requires polynomial time and spae).The situation is quite di�erent for onuently persistent data strutures, the naive solution of simplyopying the input data strutures prior to performing the update operations may require exponential timeand spae. Thus, the naive solution is inherently infeasible. This is (obviously1) true even if we don't areabout persistene at all. If all we want to do is desribe a set of derivations involving meld operations, andonly are about some �nal result, the naive representation of this �nal result is infeasible.The tehniques of [10℄ annot be used (diretly) for onuently persistent data strutures. Thus, prior tothis paper, there was no feasible implementation of onuently persistent data strutures (for general datastrutures). Perhaps our main ontribution is to show that onuently persistent data strutures are in fatfeasible.Another major di�erene between fully persistent and onuently persistent data strutures is that forfully persistent data strutures, [10℄ seek to �nd a minimal time slowdown and a minimal spae expansionwhen omparing their solution to an ephemeral data struture. In the ontent of onuently persistent datastrutures, the ephemeral data struture may be exponentially large. Thus, rather than seek a minimal timeslowdown or a minimal spae expansion, we atually obtain an exponential time speedup when ompared tothe ephemeral sheme, while requiring spae that is very lose to the information theoreti lower bound forany onuently persistent sheme.As an aid to the reader we have inluded a table of notation giving most of the notation introdued inthis paper along with a short desription and referene to the setion in whih the notation is de�ned, seeTable 2.1.1 Problem de�nitionWe onsider a family of instanes of some pointer based data struture. Eah suh instane is omposed ofnodes. Eah node onsists of a ontiguous blok of memory and ontains a �xed set of �elds. We distinguishbetween data �elds and pointer �elds. A data �eld stores an elementary piee of information partiular tothe type of the �eld, whereas a pointer �eld stores an address of another node. There may be many di�erenttypes of nodes in the data struture, distinguished by the �elds they ontain. We assume that eah nodeontains a onstant number of �elds and that when a node is alloated default initial values are assigned toits �elds. We aess the data struture via a set of aess pointers stored in �xed loations.The family of instanes of the data struture is subjet to update and query operations. Eah updateoperation takes as input a �xed set of instanes of the family, assumed to be node disjoint, and produes anew instane (possibly damaging some or all of the input instanes). Eah update operation produes theset of aess pointers for the new instane and possibly invalidates the aess pointers to its input strutures.1As the number of versions is a polynomial fator. 3
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Our goal is to transform the original ephemeral (nonpersistent) data struture to be onuently persistent.To that end we provide a representation for the family of the instanes that allows us to simulate an updateoperation suh that it does not damage the strutures that it takes as input. This way eah update operationreates a new version of the data struture, that oexists with all previous versions.We desribe all versions of a onuently persistent data struture by a version DAG. A version DAG isan ayli direted graph D = (V;E). We assume that the version DAG has a single soure vertex r suhthat all v 2 V are reahable from r. We also assume that D has no parallel edges.2 Every vertex v 2 V isassoiated with a version of the data struture, an edge (u; v) implies that the version assoiated with v wasprodued by taking as an input the version assoiated with u. Sine a new version depends only on versionsalready in existene the graph must be ayli. We refer to version u, u 2 V , rather than use the moreumbersome \the version assoiated with vertex u". We also use the notation Du to refer to version u of thedata struture. In ase the data struture does not support a meld operation the version DAG is a tree andwe degenerate to the fully persistent setting studied by DSST. See Figure 1 for an example of a version treeof a fully persistent data struture and Figure 2 for an example of a version DAG of a onuently persistentdata struture.1.2 Model of omputation, performane measures, and some terminologyFollowing the footsteps of DSST we break eah update or aess operation into its elementary omponents.We distinguish three suh omponents.1. A retrieval of a �eld value. We shall often distinguish between a retrieval of the value in a data �eldand a retrieval of the value in a pointer �eld.2. An assignment of a value to a �eld.3. An alloation of a new node.We shall denote by U the total number of assignment operations3 (steps of type (2)) and by T the totalnumber of �eld retrievals (steps of type (1)). Note that:1. The total number of nodes we alloate (steps of type (3)) is smaller than U , as eah alloation isfollowed by assigning default values to the �elds of the new node, and assigning the address of the newnode into some other �eld.2. When a new version is reated, we perform at least one assignment. Thus, the number of versions isat most U .3. The number of assignments U is O(T ). This holds sine in order to do an assignment we �rst have toretrieve the address of the node ontaining the �eld to whih we want to assign. (Reall that there areonly onstant number of �elds in eah node.)We will ompare our persistent data strutures by measuring the time and spae they require for eah �eldretrieval and for eah assignment4. In any persistent data struture we must \remember" all U assignmentsso the memory spae of any mahine implementing suh a data struture must be at least 
(U), and just2These assumptions are to simplify the presentation only and an be eliminated easily. For example, to simulate a meldoperation that takes two opies of the same version we �rst dupliate this version by an expliit update operation.3In ase an update operation performs multiple assignments to the same �eld of the same node we ount only the last suhassignment.4The time for alloating nodes will always be dominated by the time for assignments.4
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addressing the di�erent assignments requires at least 
(logU) bits. We therefore assume throughout thispaper that the atual implementation is on a Random Aess Mahine (RAM), with word length �(logU).As a main tool in our exposition we use the following very simple transformation that makes any pointerbased data struture onuently persistent. We all it the naive sheme. In this sheme before updatinga version or several versions to reate a new version we �rst opy the input version/versions and make thehanges on the new opies.1.2.1 High Level Goals.The naive sheme maintains the versions ompletely node disjoint and thereby require a large amount ofmemory, and a large amount of time for node opying. However, if we do not ount node opying but onlylook at the time and spae requirements for an individual retrieval or assignment then the naive sheme isas eÆient as doing the operations on independent ephemeral data strutures. It thus seems that the maingoal in designing eÆient persistent data strutures is to attempt to avoid the time/spae osts of opyingthe input, at the possibly added expense of inreasing the time/spae per retrieval and/or assignment.This goal indeed aptures the work of Drisoll et. al. for fully persistent data strutures. In the ontext ofonuently persistent data strutures one an aim for (and ahieve) muh more. In the onuently persistentsetting the ephemeral osts are muh larger than in the fully persistent settings. Therefore it is possible toavoid node opying while at the same time simulating �eld retrievals and assignments muh faster than thenaive sheme.1.2.2 Fully Persistent versus Conuently Persistent Data Strutures.We now seek to explain the inherent di�erene between onuently persistent and fully persistent datastrutures. Note that if we apply the naive sheme to obtain a fully persistent struture (i.e. we neverperform a meld operation) then the total number of nodes in all versions is O(U2). This follows for the fullypersistent setting as the number of nodes in any partiular version is at most U . Eah node of a partiularversion an be assoiated with a spei� alloation (maybe in another version) suh that no two nodes inthe same version are assoiated with the same alloation. Therefore in the fully persistent setting we animplement the naive sheme using O(U2) words eah onsisting of O(logU) bits5. The situation in theonuently persistent setting is fundamentally di�erent.In the onuently persistent setting the number of nodes in a single version an be as high as 2
(U). As asimple example onsider a linked list, initially onsisting of a single node, that is being atenated with itself�(U) times. The �nal list ontains 2�(U) nodes. Therefore in the onuently persistent setup we may notbe able to implement the naive sheme with memory polynomial in U .To quantify the memory requirements of the naive sheme more preisely we need the following de�nitions.Let D be a version DAG, let v be a node in the DAG, and let R(v) be the set of all di�erent paths from r tov in D. We de�ne the depth of v, denote by d(v), as the length of the longest path in R(v). We de�ne thee�etive depth of v, and denote it by e(v), as the logarithm of the number of di�erent paths from r to v inD plus 1, i.e. e(v) = log(jR(v)j) + 1. Note that the e�etive depth of v may be smaller than the depth of v,as is the ase when the DAG is a tree. For a tree the e�etive depth of every node is one, whereas the depthof a node v is the length of the path from r to v. It is also easy to onstrut examples where the e�etivedepth of a node is larger than its depth. We de�ne the depth of the DAG D, denoted by d(D), as the largest5This is the memory required for pointers to the di�erent assignment values, in addition to this we need to store the atualassignment values themselves. 5
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depth of a node in D. Similarly we de�ne the e�etive depth of D, denoted by e(D), as the largest e�etivedepth of a node in the DAG. One an view e(D) as a measure of the deviation of D from being a tree.Consider a version v of a onuently persistent data struture implemented by the naive sheme. Weassoiate eah node w in Dv with a spei� alloation of a node s(w) in v or in a version u that is an anestorof v in the DAG. Formally we de�ne node s(w) to be either w itself if w was alloated in v, otherwise, w is aopy of w0 from some predeessor version of v in the DAG, and we reursively de�ne s(w) = s(w0). We alls(w) the seminal node of w.In the onuently persistent setup many nodes in version v an be assoiated with the same seminalnode. However it is easy to see that the total number of nodes in version v assoiated with the same seminalnode is no larger than the number of paths from r to v and therefore not larger than 2e(v). It follows thatthe total number of nodes in a single version of a onuently persistent data struture may be as high as�(U � 2e(D)), and the total number of nodes in all versions may be as high as �(U2 � 2e(D)).To give unique names to these nodes we need (in total) �(U2 � 2e(D)(e(D)+ logU)) bits. Note that whenD is a tree then e(D) = 1 and this expression redues to the O(U2 logU) bits required by the naive shemein the fully persistent setting. Sine eah address of the naive sheme onsists of O(1+ e(D)log U ) words it followsthat the time it takes for the naive sheme to simulate an assignment or a retrieval is O(1+ e(D)logU ). See Table1 for a summery of the resoures required by the naive sheme in the fully persistent and the onuentlypersistent settings.1.2.3 A Paradox and its Intuitive Resolution.In ontrast to the fully persistent setting our best onuently persistent shemes require only memorypolynomial in U while at the same time improving exponentially the ephemeral time osts. This may seemto be paradoxial at a �rst glane.We now give a high level intuitive explanation as to how this paradox is resolved. The high ephemeraltime osts are due to extensive use of memory that makes the addresses beome very long. Many of theseexponentially many nodes that the naive sheme alloates share the same values in all their data �elds6.Our shemes refrain from representing all these idential nodes expliitly and therefore use less spae, wealso represent the (very large) set of pointer �elds stored in these nodes in a very ompressed representation.All this an be done while keeping the ability to simulate �eld retrievals and assignments eÆiently.1.3 Some Fundamental Tehnial Elements from DSSTDSST �rst onsidered the fat node method . The fat node method works by allowing a �eld in a node of thedata struture to ontain a list of values arranged in a binary searh tree. This list is sorted aording to alinear order of the versions that is onsistent with some preorder traversal of the version tree. This linearorder is maintained using an external struture developed by Dietz and Sleator [6℄. To get the value of a�eld in some partiular version one has to perform a binary searh on the sorted list of �eld values.The fat node method requires only a onstant number of words per assignment. Therefore its total spaerequirement is only O(U logU) ompared to O(U2 logU) of the naive sheme. This spae eÆieny omes ata ost of inreasing the time requires for �eld retrieval and assignment. Rather than O(1) time in the naivesheme we now may need O(logU) time to perform a binary searh.DSST however managed to improve the fat node method and redue this penalty in time. Using atehnique they alled node splitting they obtain a fully persistent data struture that requires only O(1)6Although their pointer �elds will in general be di�erent 6
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time per �eld retrieval or assignment. See Table 1 for a summery of the time and spae requirements of thefat node and node splitting methods.The navigation mehanism used by the transformations of DSST does not generalize to the ase wherethe version graph is a DAG rather than a tree. It is inherently inapable of handling nodes originating fromthe same seminal node in a single version. Sine both the fat node method and the node splitting methodrely on it, neither of these methods works in the onuently persistent setting. It follows that the onlyworking solution that we have is the naive sheme. But the naive sheme may also be infeasible as it requiresmemory whih is exponential in the number of updates. Therefore, prior to this work, there was no obvioussolution whose memory requirements are bounded by a polynomial in U even if we are willing to sari�ethe time bounds for �eld retrieval and assignment.1.4 Overview of Our Results.1.4.1 An Information Theoreti Lower BoundOur �rst result, presented in Setion 2 is a lower bound on the spae requirement of any general shemeto make a data struture onuently persistent. We show that for any suh sheme, and a DAG D, wean assoiated operations with the verties of D suh that some assignments would require 
(e(D)) bits.Thus, the spae that the naive sheme uses per assignment is essentially the best we an hope for withoutompromising the generality of our approah.The rest of the paper presents several methods to make data strutures onuently persistent, whileavoiding the exponential osts of node opying. Several basi ideas are shared by our methods, and theydi�er in the time/spae tradeo�s they generate. The truly fast shemes are randomized. The di�erenttime/spae osts for the various shemes are presented in Table 1.1.4.2 The Naive Sheme and the Ephemeral Data Struture.In the 1st data row of Table 1 we give the requirements of the naive sheme. To atually implement the naivesheme would require that we opy an exponential number of nodes with an assoiated exponential timerequirement. Following DSST we ompare the performane of our various shemes to the performane of thenaive sheme where node opying (and it's assoiated memory) is for free. We refer to these time/spae ostsas the ephemeral osts, as they reet the time/spae requirements of performing the appropriate operationson a non-persistent version of the data struture.As noted previously, for fully persistent data strutures, the naive sheme is a feasible (if ineÆient)possibility, for onuently persistent data strutures the naive sheme itself annot be implemented and isused solely for purposes of omparison.1.4.3 Measures of Performane.The ratio between the spae requirement per assignment for a given onuently persistent sheme and theephemeral ost in spae per assignment (or equivalently, the lower bound on spae per assignment) is alledthe spae expansion of the sheme.Let r1 be the ratio between the time required for assignment by a onuently persistent sheme and theephemeral ost in time for assignment, let r2 be the ratio between the time required for retrieval by thesheme and the ephemeral ost in time for retrieval. Let r = maxfr1; r2g, we de�ne the time slowdown ofthe sheme to be r if r � 1, we de�ne the time speedup of the sheme to be 1=r if r < 1.7
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Shemes Total # of bits Spae (# words) Time per Time per(for all versions) per Assignment Assignment RetrievalConuently Persistent \Ephemeral osts"naive sheme O U2 � 2e(D)� (e(D) + logU) ! O �1 + e(D)log U � O �1 + e(D)log U � O �1 + e(D)log U �Any Sheme(Info. TheoryLower Bound) 
 (U � e(D)) 
 �1 + e(D)log U �Full Path O(U � d(D) logU) O(d(D)) O(d(D) + logU) O(d(D) + logU)Comp. Path O(U � e(D) logU) O(e(D)) O(e(D) + logU) O(e(D) + logU)Rand.Full Path O(U � d(D) log T ) O �d(D) log Tlog U � O �log3(d(D)) log TlogU � O �log2(d(D)) log Tlog U �Rand.Comp. Path O(U � e(D) log T ) O �e(D) log TlogU � O logU+ log3(e(D)) log TlogU ! O logU+log2(e(D)) log Tlog U !Fully Persistent (For Comparison, from [DSST℄) \Ephemeral osts"naive sheme O(U2 logU) O(1) O(1) O(1)Fat nodes O(U logU) O(logU) O(logU) O(logU)Node splitting O(U logU) O(1) O(1) O(1)Table 1: Summary of our results, where U = number of assignments, e(D) = e�etive depth of the DAG,d(D) = depth of the DAG, T = total number of �eld retrievals. Note that T � U . We assume that eahword has �(logU) bits and requires O(1) time to read/write.Note is that the total memory required for the data struture, in all onuently persistent shemes we present,is exponentially smaller than the memory required by the naive sheme, and not far from the informationtheoreti lower bound.Rows labeled Rand. Full Path and Rand. Comp. Path warrant speial attention. The time we assoiatewith an assignment may be smaller than the spae per assignment. Obviously, this an only be done in anamortized setting: we harge the time omponent of writing this data against the time required for retrievalsprior to the assignment. Also, the time requirements for assignment and retrieval may be exponentiallybetter than the equivalent ephemeral osts. This seemingly impossible paradox is explained in detail in thepaper.
8
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Note that the measures of spae expansion, time slowdown, and time speedup, are all based on theephemeral osts. Thus, in a omparison with the naive sheme, these measures all disriminate in favor ofthe naive sheme in the sense that they ignore the osts assoiated with node opying for the naive shemewhereas the onuently persistent sheme is harged for everything.1.4.4 Common Elements.We start by desribing elements that are ommon to all our onuently persistent data strutures.All our algorithms use fat nodes in a way similar to the fat node method of DSST. Eah fat node forresponds to a spei� alloation of a node s by some update operation. Fat node f represents all nodes wof the naive sheme that are derived from s by node opying, i.e. all nodes w suh that s(w) = s. For a fatnode f , we denote by N(f) the set of nodes of the naive sheme that it represents. To identify a partiularnode w of the naive sheme in our simulation we use a path in the DAG. This is the path from s(w) to wthat goes through every version v whih ontains a node w0 from whih w is derived by a series of node opyoperations. Every fat node stores all values assigned to its �elds in all the nodes that it represents. Ourdi�erent algorithms di�er in how they represent the fat nodes and in how they represent paths in the DAG.1.4.5 The Full Path Method.Our �rst and the simplest method to make a data struture onuently persistent is the full path method.This method represents a path in the DAG by the list of versions it ontains. It represents the values of eah�eld in a fat node in a trie. Eah value is identi�ed by the path that orresponds to the node in whih thisvalue was assigned. The full path method gives a deterministi onuently persistent data struture suhthat the spae ost of an assignment is at most O(d(D)) words.Sine d(D) may be muh larger than O(e(D)) the spae expansion of the full path method may be large.In partiular if D is a tree, (I.e., we are not really dealing with a onuently persistent data struture sineno melds take plae), then the performane of the full path method would be muh worse than that of the fatnode method of DSST. The time per �eld retrieval and an assignment of this method is O(d(D) + logF) =O(d(D) + logU) where F is the maximum number of assignments that we do to a partiular �eld in thefamily N(f) of all nodes assoiated with a fat node f . The full path method is desribed in Setion 4.1.4.6 The Compressed Path Method.Our seond method is the ompressed path method. Our motivation in designing this method was to enhanethe full path method so it redues to the fat node method of DSST in ase the DAG is a tree. In general, theperformane of the ompressed path method is a funtion of the e�etive depth of the DAG, e(D), whih is ameasure of the deviation of the DAG from being a tree. When e(D) = 1 (the DAG is a tree) the ompressedpath method redues to the fat node method of DSST.The essene of the ompressed path method is a partiular partition of our DAG into disjoint trees. Thispartition is de�ned suh that every path enters and leaves any spei� tree at most one. The ompressedpath method enodes paths in the DAG as a sequene of pairs of versions. Eah suh pair ontains a versionwhere the path enters a tree T and the version where the path leaves the tree T . We show that the lengthof eah suh representation is O(e(D)). Eah value of a �eld in a fat node is now assoiated with theompressed representation of the path of the node in N(f) in whih the orresponding assignment ourred.A key property of these ompressed path representations is that they allow easy implementations of ertainoperations on paths. 9
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The spae expansion of the ompressed path method is O(logU): As assignment requires up to O(e(D))words eah of O(logU) bits. The time slowdown of the ompressed path method is also O(logU): Searhingor updating the trie representing all values of a �eld in a fat node requires O(e(D) + logU) time. Theompressed path method is desribed in Setion 5.1.4.7 Randomized Methods.Our last two methods the randomized full path method and the randomized ompressed path method arevariations of the full path method and the ompressed path method, respetively. Surprising, they atuallyattain signi�ant time speedup over the naive sheme at the expense of a (slightly) larger spae expansionthan that of the non-randomized algorithms. These methods make use of randomization and have somepolynomially small probability of inaurately representing our olletion of versions.Our randomized methods enode eah path (or ompressed path) in the DAG by an integer. We assign toeah version a random integer, and the enoding of a path p is simply the sum of the integers that orrespondto the versions on p. Eah value of a �eld in a fat node is now assoiated with the integer enoding the pathof the node in N(f) in whih the orresponding assignment ourred. To index the values of eah �eld weuse a hash table storing all the integers orresponding to these values.To deal with values of pointer �elds we have to ombine this enoding with a representation of paths inthe DAG (or ompressed paths) as balaned searh trees, whose leaves (in left to right order) ontain therandom integers assoiated with the verties along the path (or ompressed path)7.This representation allows us to perform ertain operations on these paths in logarithmi (or poly-logarithmi) time whereas the same operations required linear time using the simpler representation of pathsin our non-randomized methods. In partiular, we an ompute the integer assoiated with of a pre�x of apath by splitting the orresponding balaned binary tree in logarithmi time.To put everything together we need these binary searh trees to be onuently persistent themselves.We ahieve that by the path opying method of DSST. Aording to this method we dupliate every nodewhih hanges while updating the tree. Sine only logarithmially many nodes hange with split or onatoperations, every �eld retrieval or assignment (on the larger onuently persistent data struture) requiresno more than logarithmi time and spae.The size of eah random integer whih we assign to a version depends on the total number of stepsthe simulation performs. I.e., it depends both on the number of �eld retrievals and on the number ofassignments. Spei�ally the spae required per assignment grows by a fator of log T = logU . The timebounds however, are now polylogarithmi in d(D) and e(D) in the randomized full path method and in therandomized ompressed path method, respetively. Thus if T is polynomial in U the randomized ompressedpath method has a time speedup of 
(e(D)=polylog(e(D))).2 A Simple Lower BoundWe �rst reall the following de�nition from Setion 1.2.2. Let R(u) be the set of paths in the versionDAG between the root and the vertex u. The e�etive depth of the version assoiated with a vertex u ise(u) = log2 jR(u)j+ 1.7These searh trees are somewhat non-standard: The searh key assoiated with an internal vertex is the index of therightmost leaf in its left subtree. The searh keys are not expliitly stored in the internal verties but are omputed on the yfrom ounters, stored in every internal vertex, giving the size of the subtree rooted at that vertex. See Setion 6.10
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Notation Short Desription SetionD = (V;E) The version DAG. 1.1Du The data struture after performing the update operation at u. 1.1U Total number of assignments. 1.2T Total number of �eld retrievals. 1.2R(u) The set of paths between the root and u. 1.2.2d(u) The depth of u. 1.2.2e(u) The e�etive depth of u: log2(jR(u)j) + 1. 1.2.2s(w) The seminal node of node w of the naive sheme. 1.2.2N(f) All ephemeral nodes (nodes of the naive sheme) whose seminal node is s(f). Note that twoversions of the naive sheme have disjoint nodes even if the nodes have simply been opiedfrom version to version. 1.4.4ID An instantiation of the version DAG D. 2ID(u) The update operation performed at u in the instantiation ID. 2f(w) The fat node assoiated with node w of the naive sheme. 3p(w) The pedigree of node w of the naive sheme. 4(p(w); w0) An identi�er for a node w (of the naive sheme) with pedigree p(w) and seminal node w0. 4s(f) The seminal node assoiated with fat node f . 4.1f(s) The fat node assoiated with seminal node s. 4.1p(A;w) The assignment pedigree of �eld A in ephemeral node w. 4.1P (A; f) = fP (A;w)jw 2 N(f)g, the set of all assignment pedigrees for A in fat node f . 4.1F = maxA;f jP (A; f)j, an upper bound on the total number of ephemeral nodes with a ommonseminal node in whih there is an assignment to a spei� �eld. 4.4` : V 7! Z+ The level funtion on the verties of the version DAG. 5F A partition of the version DAG into trees indued by the level funtion. 5(p) The ompressed representation of a path p. In Lemma 5.1 we show that j(p)j = O(e(u))where p is a path from the root to u in the version DAG. 5~(p) The index of a path p, equal to (p) with the last vertex removed. 5eC(A; f) = f~(p)jp 2 P (A; f)g, the set of all indies of pedigrees in P (A; f). 5O(~) An orale assoiated with index ~ (and some �xed seminal node s and �xed �eld A). Whenpresented with an appropriated ompressed path (p) - returns the value of A in the ephemeralnode whose identi�er is (p; s). 5.1L(~) A list of pairs (v; x) where p is a pedigree of some ephemeral node w, all suh w have thesame �xed seminal node s, (p) = ~jjv, and x is the value of a �xed �eld A in w. 5.1�; �; �0; : : : Sequenes of integers. 6.1� A set of sequenes of integers 6.1sum(�) The sum of the elements in the integer sequene � 6.1pi(�) A pre�x of � of length i. 6.2m(�) Number of ones in binary representation of j�j. 6.2�̂ Set of pre�xes of �, depends on binary representation of j�j. 6.2b� = [�2��̂, a set of pre�xes of sequenes in �. 6.2r : V 7! f0; : : : ; Rg A random mapping from the verties of the version DAG to the positive integers � R 6.3r(p) The randomized pedigree orresponding to p. Note that r(p) is a sequene of integers, notverties of the DAG. 6.3R(A; f) = fr(p)jp 2 P (A; f)g, the set of randomized assignment pedigrees for A in fat node f . 6.3Table 2: Summary of notation used, and setion in whih notation is de�ned.11
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We also de�ne an instantiation of a version DAG, D = (V;E), denoted ID, is the assignment of anupdate operation, ID(u), to every vertex u 2 V . The update operation ID(u) takes as input aess pointersto the data strutures fDvj(v; u) 2 Eg, The output of ID(u) is a set of aess pointers to the data strutureDu resulting from the operation of ID(u) on the set of data strutures fDvjv 2 P (u)g. With this terminologywe an state our lower bound as follows.Theorem 2.1 Let D = (V;E) be a version DAG and let k = 
(jEj2). For any vertex u 2 V suh thate(u) > 2 log k, there exists an instantiation ID with k assignments at node u suh that any representation ofDu requires 
(e(u))) bits on average for eah of these k assignments.Proof: The data struture we use to de�ne the instantiation is a red/blak binary tree. We don't use thesearh properties of the red/blak tree, but only make use of the olor bits to rebalane the tree. Every nodeontains four �elds in addition to the olor bit, a pointer to a left hild, a pointer to a right hild, a data�eld, ount, that stores the number of nodes in the left subtree, and another data �eld, ative, taking valuesTrue and False.At the root of the version DAG we alloate a tree onsisting of a single node, we set the ative �eld toFalse. At all other verties we onatenate the trees assoiated with versions v suh that (v; w) 2 E, in somearbitrary order. We update the pointers and the ount �elds as we balane the tree. The tree resulting fromu, Du must have exp(e(u)) nodes, one for every path from the root to u.The instantiation ID also has an additional set of assignment operations at vertex u. Consider a sequeneb1; b2; : : : ; bk, where bi is a sequene of bits of length e(u) � log k. Let vi be the integer whose base 2representation onsists of the log k-bit base 2 representation of i onatenated to bi. For all 1 � i � k, assignTrue to the ative �eld of the node whose index in the inorder traversal of the tree is vi. Note that we anreah this node in polynomial time by using the ount �elds of the nodes in the tree.From versionDu we an reonstrut (in exponential time) all the k bloks, giving a total of k �(e(u)�log k)bits of information.It is known that the number of assignments performed by a red blak balaning proess is logarithmiin the number of verties in the tree, i.e., no more than logarithmi in exp(e(u)) whih is O(e(u)) 2 O(jEj).The total number of atenations performed by our instantiation is O(jEj), so therefore the total numberof assignments performed by the naive sheme during atenations, assoiated with red/blak balaning, isO(jEj2).We obtain that by performing a total of O(jEj2) + k assignments we've enoded k � (e(u)� log k) bits ofinformation in Du. Therefore, if k 2 
(jEj2) we get an average ost of 
(e(u)) bits per assignment. 23 An Overview of the Fat Node Method for Fully Persistent DataStruturesIn this setion we review the method of Drisoll et. al. to onvert an ephemeral data struture to a fullypersistent data strutures. We also explain why these tehniques annot work diretly to obtain a onuentlypersistent data struture. Furthermore our data strutures of Setions 5 and 6 will use the tehnique of DSSTas one of their building bloks.For an alloation of an ephemeral node, w, Drisoll et. al. alloate a orresponding fat node f(w). Nodef(w) represents w in all versions ontaining it. Eah �eld A in f(w) orresponds to the same �eld A in wand stores a list of all the values that A takes in all versions ontaining w. A key omponent of the data12
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struture is how to organize eah suh list so that one an retrieve the right value of the �eld in a partiularversion.To this end Drisoll et. al. maintain a linked list L(T ) of all the versions in the version tree T . A newversion is added to the list immediately following its parent in the version tree so the list is a preordertraversal of the version tree. We de�ne version v to be smaller than version u, and denote it by v < u if vpreedes u in L(T ). In addition a data struture desribed by Dietz and Sleator [6℄ is maintained to allowone to determine whether v < u in onstant time for any pair of versions v and u. Insertion of a new versioninto this data struture also takes onstant time.Eah value assoiated with �eld A in node f(w) is indexed by a version number. This olletion of valuesis ordered in a list L(A) suh that a value assoiated with version v preedes a value assoiated with versionu in L(A) i� v < u. Drisoll et. al. (DSST) maintain L(A) suh that the value of �eld A in version v is theone assoiated with the largest version smaller than or equal to v in L(T ) that appears in L(A).When the ephemeral data struture alloates a new node w while reating version u we alloate a newfat node f(w). We initialize every list L(A) of a �eld A in f(w) to ontain a single element whose index isu and the assoiated value is the default value assigned to the �eld by the ephemeral data struture.When the ephemeral data struture assigns a value N to �eld A in node w while reating version u weupdate L(A) in f(w) as follows. Let uL = maxfu 2 L(A) j u � vg, let uR = minfu 2 L(A) j u > vg, and letu+ be the suessor of u in L(T ).1. If uL = u then we hange the value assoiated with u to N .2. If uL < v then we add u to L(A) after uL and assoiate the value N with it. Furthermore, if uR existsand uR > u+, or uR does not exist but u+ does, we also add u+ to L(A) with the value assoiatedwith uL.If searh trees are used to represents the lists L(A) then we obtain a fully persistent data struture withO(1) spae expansion per assignment and O(logF) time slowdown per assignment and per retrieval of a �eldvalue, where F is the total number of assignments to the �eld (Note that F is at most U { the total numberof assignments). Drisoll et. al. also show how to redue the time slowdown to O(1) via a tehnique allednode splitting . For further details about the node splitting method see DSST.The method of Drisoll et. al. breaks down when we want to obtain a onuently persistent data struture.In a onuently persistent setting we may reate several dupliates of the same node eah time we reate anew version. Therefore we no longer an identify an ephemeral node of a partiular version by a pointer toa orresponding fat node and a version number. We need a more evolved identi�ation mehanism that willallow us to determine whih of possibly many dupliates of the same node we are urrently traversing.4 The Full Path Method: Slowdown and expansion proportionalto the depth in the DAGWe �rst provide several de�nitions that refer to the naive sheme. For an edge (u; v) 2 D we denote theopy of the version Du to whih the naive sheme applied the update operation that reated v by ~Du. Let(u; v) be an edge of the version DAG. Let w be some node in the data struture Dv. We say that node w inversion v was derived from node y in version u if w was formed by a (possibly empty) set of assignments toa node ~y 2 ~Du, and ~y is the opy of y 2 Du. 13
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Figure 3: Examples for node pedigree, node identi�er, and assignment pedigree (see text).
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We assoiate a pedigree with every node w of the naive sheme, and denote it by p(w). The pedigreep(w) is a path p =< v0; v1; : : : ; vk = u > in the version DAG suh that (i) w is a node of Du and (ii) thereexist nodes wk = w;wk�1; : : : ; w1; w0, where wi is a node of Dvi , w0 was alloated in v0, and wi is derivedfrom wi�1 for 1 � i � k. Note that w0 is the seminal node of w, denoted by s(w) as de�ned in Setion 4.1.The identi�er for a node w of the naive sheme is the pair (p(w); s(w)), where p(w) is the pedigree of w ands(w) is the seminal node of w. We point out that a pedigree p =< v0; v1; : : : ; vk = u > by itself may notuniquely determine a node w in Du as there may be more than a single node alloated at version v0. Anidenti�er does determine w 2 Du uniquely.In �gure 3 we see that version v4 has three nodes (the 1st, 3rd, and 5th nodes of the linked list) withthe same seminal node w00. The pedigree of the 1st node in Dv4 is < v0; v1; v3; v4 >, the identi�er of thisnode is (< v0; v1; v3; v4 >;w00). The pedigree of the 2nd node in Dv4 is also < v0; v1; v3; v4 > but it has adi�erent seminal node (w0 and not w00), thus the identi�er for the 2nd node in Dv4 is (< v0; v1; v3; v4 >;w0).Similarly, we an see that the identi�ers for the 3rd, and 5th nodes of Dv4 are (< v0; v2; v3; v4 >;w00) and(< v0; v2; v4 >;w00) respetively. Note also that a node w 2 Du is a seminal node of some node if and onlyif it was expliitly alloated when Du has been reated.4.1 Full Path Method Emulation.Our data struture onsists of a olletion of fat nodes. Eah fat node orresponds to an expliit alloationof a node by an update operation or in another words, to a seminal node of the naive sheme. For a fatnode f we denote its orresponding seminal node s(f) and for a seminal node s we denote its orrespondingfat node by f(s).8 For example, the update operations of Figure 3 perform 3 alloations (3 seminal nodes)labeled w0; w00, and w000 , so our data struture will have 3 fat nodes, f(w0), f(w00) and f(w000 ).The full path method represents a node of the naive sheme whose identi�er is (r; s) by the pair (r; f(s).Therefore, every value of a pointer �eld in our simulation is suh a representation.A fat node f of our data struture represents all nodes of the naive sheme whose seminal node is s(f).Reall that we denote this set of nodes by N(f). Note that N(f) may ontain nodes that o-exist withinthe same version and nodes that exist in di�erent versions. A fat node ontains the same �elds as theorresponding seminal node. Eah of these �elds, however, rather than storing a single value as in theoriginal node stores a dynami table of �eld values in the fat node. To speify the representation of a set of�eld values we need the following de�nitions.Let (p =< v0; : : : ; vk = u >;w0) be the identi�er of a node w 2 Du. Let wk = w;wk�1; : : : ; w1, wi 2 Dvibe the sequene of nodes suh that wi 2 Dvi is derived from wi�1 2 Dvi�1 . This sequene exists by thede�nition of a node pedigree. Let A be a �eld in w and let j be the maximum suh that there has been anassignment to �eld A in wj . The identi�er of wj is (q =< v0; v1; : : : ; vj >;w0). We de�ne the assignmentpedigree of a �eld A in node w, denoted by p(A;w), to be the pedigree of wj , i.e. q.In the example of Figure 3 the nodes ontain one pointer �eld (named next) and one data �eld (namedx). The assignment pedigree of x in the 1st node of Dv4 is simply < v0 >, the assignment pedigree of x inthe 2nd node of Dv4 is likewise < v0 >, the assignment pedigree of x in the 3rd node of Dv4 is < v0; v2; v3 >.Pointer �elds also have assignment pedigrees. The assignment pedigree of the pointer �eld in the 1st nodeof Dv4 is < v0; v1 >, the assignment pedigree of the pointer �eld in the 2nd node of Dv4 is < v0; v1; v3 >, theassignment pedigree of the pointer �eld of the 3rd node of Dv4 is < v0; v2 >, �nally, the assignment pedigreeof the pointer �eld of the 4th node of Dv4 is < v2; v3; v4 >.8Note that we use the funtion s() to denote the seminal node of a node w of the naive sheme, and to denote the seminalnode orresponding to a fat node f . No onfusion an our. 15
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We all the set fp(A;w) j w 2 N(f)g the set of all assignment pedigrees for �eld A in a fat note f , anddenote it by P (A; f). The table that represents �eld A in fat node f ontains an entry for eah assignmentpedigree in P (A; f). The value of a table entry, indexed by an assignment pedigree p, depends on the typeof the �eld as follows.1. Data �elds: For the assignment pedigree p =< v0; v1; : : : ; vj >, let wj 2 Dvj be the node whoseidenti�er is (p; s(f)). The value stored in this entry is the value assigned to A in wj .2. Pointer �elds: For the assignment pedigree p =< v0; v1; : : : ; vj >, let wj 2 Dvj be the node whoseidenti�er is (p; s(f)). Consider the assignment to A in this node, this assignment is either null or apointer to some node w0 2 Dvj . If the pointer is assigned null then the value we store with p is also null.Otherwise, the value we store with p is the pair (p0; f(s0)) where (p0; s0) is the identi�er of w0 2 Dvj .If A is a data �eld then its value in a node w 2 N(f) is the same as its value in the node w0 2 N(f)whose pedigree is p(A;w). (Note that w0 = w if there has been an assignment to A in w.) Thus the tableontains all possible values taken by A in nodes of N(f). For pointer �elds however this is not the ase.The value of a pointer �eld in a node w 2 N(f) is not the same as the value of the �eld in the node whosepedigree is p(A;w). So our table does not ontain all possible values taken by A in nodes of N(f). We willshow however that from the values stored in the table we an ompute all other values.In Figure 4 we give the fat nodes of the persistent data struture given in Figure 3. For example,the �eld next has three assignments in nodes of N(f(w00)). Thus, there are three assignment pedigrees inP (next; f(w00)):1. < v0 > | alloation of w00 in version Dv0 and default assignment of null to next.2. < v0; v1 > | inverting the order of the linked list in version Dv1 and thus assigning next a new value.The pointer is to a node whose identi�er is (< v0; v1 >;w0) so we assoiated the value (< v0; v1 >; f(w0)) with < v0; v1 >.3. < v0; v2 > | alloating a new node, w000 , in version Dv2 , and assigning next to point to this new node.The identi�er for w000 is (< v2 >;w000 ) so we assoiate the value (< v2 >; f(w000 )) with < v0; v2 >.You an see all three entries in the table for next in the fat node f(w00) (Figure 4). Similarly, we give thetable for �eld x in f(w00) as well as the tables for both �elds in fat nodes f(w0) and f(w000 ).Consider a version v in the naive sheme. There is a set B of aess pointers assoiated with this version.Consider one suh pointer, q 2 B, pointing to node w 2 Dv. The node pointed to, w, has some identi�er(p; s). The orresponding aess pointer q whih we store at v in our full path method data struture is thepair (p; f(s)). (We assume that the aess pointers to version v are stored in the orresponding vertex of theversion DAG.) Table 3 gives the �ve aess pointers required for the onuently persistent data struture ofFigure 4.4.2 Retrieving Field Values.Given a pointer to a fat node f and a pedigree q suh that (q; s(f)) is an identi�er of some node w 2 N(f),we seek to obtain the value of �eld A in w. In order to do so, we �rst �nd the value assoiated with p(A;w),the assignment pedigree of A in w, in the table representing the values of �eld A. By the de�nition ofassignment pedigree, p(A;w) is the longest pre�x of q in P (A; f), so the problem redues to �nding the entryorresponding to this pre�x. We all the problem of loating the longest pre�x of a pedigree q in the setP (A; f) the Pedigree Maximum Pre�x Problem. 17
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Version Aess PointerDv0 (< v0 >; f(w0))Dv1 (< v0; v1 >; f(w00))Dv2 (< v0; v2 >; f(w00))Dv3 (< v0; v1; v3 >; f(w00))Dv4 (< v0; v1; v3; v4 >; f(w00))Table 3: Aess pointers for versions v0; : : : ; v4 in onuently persistent data struture of Figure 4.In ase A is a data �eld, after solving the orresponding instane of the Pedigree Maximum Pre�xProblem, we are done. The value of �eld A in w is simply the value assoiated with p(A;w). However, if Ais a pointer �eld then the value stored with p(A;w) may not be the value of A in w.In ase A is a pointer �eld the value assoiated with p(A;w) is either null or a pair (p; f). If this valueis null then the value of �eld A in w is also null. We next onsider the ase where this value is a pair (p; f).Let q =< q0; : : : ; qk > and let p(A;w) =< q0; q1; : : : ; qj >. Sine the value of p(A;w) is (p; f) we knowthat �eld A of node xj 2 Dqj whose identi�er is (p(A;w); s(f)) was assigned a pointer to node yj whoseidenti�er is (p; s(f)). Sine x and y are both nodes of Dqj the last node on p must be qj .Let xi, j � i � k, be the node in version Dqi whose identi�er is (< q0; q1; : : : ; qi >; s(f)). Let yi,j � i � k, be the node in version Dqi whose identi�er is (pjj < qj+1; : : : ; qi >; s(f)). From the de�nition ofassignment pedigree follows that for j < i � k, there is no assignment to �eld A in node xi 2 Dqi . Thus,node xi 2 Dqi points to node yi 2 Dqi . In partiular node w = xk 2 Dqk points to node u = yk 2 Dqk . Sothe value of �eld A in w is (pjj < qj+1; : : : ; qi >; s(f)).To summarize, the proess of omputing the value of a pointer �eld A in node w whose identi�er is(q; s(f)) is as follows: We searh the table ontaining P (A; f) for the value (p; f) assoiated with theassignment pedigree of A in w, p(A;w). One we �nd (p; f) then the fat-node omponent of the value of Ain w is f . To obtain the pedigree omponent of the value of A in w we replae the pre�x p(A;w) of q withp. We all this transformation Pedigree Pre�x Substitution.A Detailed Example of Traversal in a Conuently Persistent Data Struture.Continuing the example of Figures 3 and 4 and Table 3, we now show how to traverse the linked listy1; y2; : : : of version Dv4 . The aess pointer for Dv4 , (< v0; v1; v3; v4 >; f(w00)), is a representation of y1. Toobtain the values of x and next for y1, we go to the fat node f(w00) and apply the proess desribed above.The assignment pedigree of �eld x in y1, p(x; y1), is the longest pre�x of< v0; v1; v3; v4 > in the assignmentpedigree table for x stored in f(w00). This is < v0 > so the value of x in y1 is 1. The assignment pedigreeof �eld next in y1, p(next; y1), is < v0; v1 >, and the value assoiated with this entry in the table is(< v0; v1 >; f(w0)). Aording to the algorithm above to obtain the representation of y2 we need to replaethe pre�x p(next; y1) (< v0; v1 >) of the pedigree of y1 (< v0; v1; v3; v4 >) with the pedigree omponentof the retrieved value (< v0; v1 >). In this ase | this substitution does not hange the pedigree. Therepresentation of y2 is therefore (< v0; v1; v3; v4 >; f(w0)).The assignment pedigree of �eld x in y2, p(x; y2), is the longest pre�x of< v0; v1; v3; v4 > in the assignmentpedigree table for x stored in f(w0). This is < v0 > so the value of x in y2 is 2. The assignment pedigreeof �eld next in y2, p(next; y2), is < v0; v1; v3 >, and the value assoiated with this entry in the tableis (< v0; v2; v3 >; f(w00)). To obtain the representation of y3 we need to replae the pre�x p(next; y2)(< v0; v1; v3 >) of the pedigree of y2 (< v0; v1; v3; v4 >) with the pedigree omponent of the �eld value i.e.18
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< v0; v2; v3 >. The representation of y3 is therefore (< v0; v2; v3; v4 >; f(w00)).The assignment pedigree of x in y3 is < v0; v2; v3 >, the value of x in y3 is 3. The assignment pedigree ofnext in y3 is < v0; v2 >, the value assoiated with it is (< v2 >; f(w000 )). After pre�x substitution we obtainthat the representation of y4 is (< v2; v3; v4 >; f(w000 )).The assignment pedigree of x in y4 is < v2; v3 >, the value of x in y4 is 3. The assignment pedigree of nextin y4 is < v2; v3; v4 >, and the value assoiated with it is (< v0; v2; v4 >; f(w00)). After pre�x substitutionwe obtain that the representation of y5 is (< v0; v2; v4 >; f(w00)).The assignment pedigree of x in y5 is < v0 >, the value of x in y5 is 1. The assignment pedigree of nextin y5 is < v0; v2 >, and the value assoiated with it is (< v2 >; f(w000 )). After pre�x substitution we obtainthat the value of next whih is the representation of y6 is (< v2; v4 >; f(w000 )).The assignment pedigree of x in y6 is < v2 >, the value of x in y6 is 1. The assignment pedigree of nextin y6 is < v2 >, the value assoiated with it is null. Therefore the value of next in y6 is also null and the listends.4.3 Simulating updatesWhen we reate a new version v from versions v1; : : : ; vk we �rst onsider v simply as a disjoint union ofv1; : : : ; vk. To do that we initialize the set of aess pointers to v to be the union of the sets of aesspointers to v1; : : : ; vk after augmenting eah aess pointer (p; f) by adding v as the last vertex of p. Thenwe ontinue and simulate the update operation used to produe v. We simulate traversal steps as desribedabove. We simulate assignments as follows.When we assign a value N to a data �eld A in a node w represented by the pair (p; f) we add p to thetable assoiated with �eld A in f if it is not already there. We set the value assoiated with p in this tableto be N .Assignment to a pointer �eld is handled in a similar way. Let (p; f) be the pair representing the nodeontaining pointer �eld A to whih we want to assign a value. If the pointer should point to the node whoseidenti�er is (p0; s(f 0)) we add p to the table assoiated with A in f if it is not already there and store thepair (p0; f 0) as the orresponding value.4.4 Implementation and AnalysisWe assume that eah version is numbered uniquely and we represent a path in the version DAG by thesequene of the numbers of the versions on the path. We represent this sequene of numbers as a linked list.To obtain an eÆient implementation of the full path method data struture we need a representation forthe tables representing �eld values in the fat nodes. This representation should allow to solve the PedigreeMaximum Pre�x Problem eÆiently.One possible representation is a trie whih ontains all assignment pedigrees in the table. Eah edgein the trie is labeled by a version number, and eah path in the trie orresponds to a path in the versionDAG. The trie is organized suh that it ontains a path for eah assignment pedigree of the orresponding�eld. The value assoiated with an assignment pedigree is stored at the last node of the orresponding path.The number of hildren of a node in suh a trie is unbounded. Therefore in order to eÆiently traverse apath in the trie we ould represent the hildren of eah partiular node as items of a searh tree keyed byversion numbers. Using a red-blak tree [13℄ (or any other kind of unweighted searh tree data struture)to represent the list of hildren of every node we an �nd the longest pre�x of a pedigree q whih is an19
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assignment pedigree in time O(jqj log d) where d is the maximum outdegree of a node in the version DAG9.We an obtain a more eÆient representation of the trie above by using a splay tree [26℄ or a biasedsearh tree [2℄ to represent the hildren of eah node10. Suh an implementation of a trie using splay trees isdesribed by Sleator and Tarjan in [26℄, who alled them lexiographi splay trees. In a lexiographi splay treethe searh for a node y within the list of hildren of a node x takes time proportional to log(s(x)=s(y))+O(1)where s(z) is the number of assignment pedigrees that terminate at (not neessarily proper) desendants ofz. Thus the searh times within the hildren lists of nodes on a path in the trie telesope. We obtain thatwith this representation we an �nd the longest pre�x of a pedigree q whih is an assignment pedigree intime O(jqj + logF) where F is the maximum number of assignment pedigrees assoiated with a partiular�eld in a partiular fat node (i.e. the maximum size of a set P (A; f)). This time bound is amortized if splaytrees are used but ould be made worst-ase using biased searh trees.It is not hard to show that the two possible representations of the trie data struture desribed above alsosupport insertions within the same time bounds. In partiular we obtain that using splay trees we an �nda �eld value and simulate an assignment (as shown in 4.3) in version v in O(jd(v)j+ logF) amortized time,where d(v) is the depth of version v in the version DAG. The following Theorem summarizes the propertiesof the Full Path Method.Theorem 4.1 Using the Full Path Method one obtains a onuently persistent emulation of an ephemeraldata struture with the following performane during an aess or update operation on version v.1. The spae onsumption per assignment is O(d(v)) words (eah onsisting of O(log(U)) bits)112. Simulation of a retrieval of a �eld value takes O(d(v)+logF) time, where F is the number of assignmentpedigrees assoiated with the �eld at the time of the retrieval.3. Simulation of an assignment takes O(d(v)+logF) time, where F is the number of assignment pedigreesassoiated with the �eld at the time of the assignment.Remark:1. Note that the bounds spei�ed in Theorem 4.1 are a re�nement of the bounds given in Table 1. Thisis sine F = O(U), and d(v) � d(D) for every vertex v.2. If we represent the tries with regular searh trees at eah node then the time bounds whih we obtainare O(jd(v)j log(jV j)) = O(d(D) logU) for �eld retrieval and assignment.5 The Compressed Path MethodAs mentioned in Setion 1.2.2 the depth of u, d(u), may be muh larger than the e�etive depth of u, e(u). Inthis setion we address this problem and redue the spae omplexity of our data struture to O(e(u)) words9Note that the the maximum outdegree of a node in the trie is upper bounded by the maximum outdegree of a node in theDAG.10When we use a biased searh tree the weight we assoiate with eah node x is the number of assignment pedigrees thatterminate at (not neessarily proper) desendants of x.11We ould redue the memory requirement to O(d(v) log(jV j) + log(U)) bits, whih ould be stored inO(d(v) log(jV j)= log(jUj) + 1) words. To ahieve this we represent eah trie in a ompressed form in whih unary nodesare eliminated and edges are labeled with a sequene of version numbers. With this representation we an add a path to theDAG by adding at most two nodes and two edges to the trie. Pointers to the new nodes added to the trie, pointers to thenew edge labels, and pointers in the value of the �eld (suh as the pointer to the fat node for a pointer �eld), are of lengthO(logU) bits. The labels on the new edges and paths through the DAG that are part of the value of a pointer �eld are of lengthO(d(v) log(jV j)) bits. 20
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per assignment. Note that if we ount bits then this implies that the spae omplexity of an assignment iswithin a fator of O(logU) of e(u) | the bit ost lower bound of assignments at u. To do this we introduea ompressed representation for path in the version DAG. This ompressed representation will also be usedto redue the time bound of retrieving a �eld value at version u from O(d(u) + logF) to O(e(u) + logF).Another property of the ompressed path method is that it degenerates to the fat node method of DSSTwhen the version DAG is a tree.To de�ne the ompressed representation of paths we �rst de�ne a level funtion ` on the verties of theversion DAG. The root gets a level of zero. We traverse the version DAG in topologial order. Let v be aversion that is reated from v1; : : : ; vk. Let vj be a vertex suh that `(vj) is maximum among `(v1); : : : ; `(vk).If vj is the only vertex at level `(vj) then assign `(v) = `(vj). Otherwise we set `(v) = `(vj) + 1.Consider the graph indued by taking all verties sharing some �xed value of `. This is a forest of trees.This follows beause every vertex an have at most one predeessor vertex with the same ` value. Let F bethe family of trees indued by the ` funtion. Every edge of the DAG is either within a tree, or goes from aversion in a lower level tree to a version in a higher level tree. Therefore every path in the DAG intersetsat most one tree per level and this intersetion is a ontiguous subpath. See Figure 5.Note that the funtion ` an be omputed and the partition F an be maintained in an online mannerwhere new verties are added to the version DAG over time.Given a path p =< u0; u1; : : : ; uk > in the DAG and a parition F of the DAG into trees, we de�nethe ompressed representation of p, and denote it by (p), as follows. The ompressed representation is asequene of pairs (p) =< e1 = u0; t1; e2; t2; : : : ; ej ; tj = uk > where for some i's ei may be equal to ti, suhthat1. For all 1 � i � j � 1, ti and ei+1 are onseutive verties along p.2. For all 1 � m � j there exists a unique T 2 F suh that the subpath of p between ei and ti (inlusive)belongs to T , and furthermore any longer subpath p0 of p that properly ontains the subpath betweenei to ti (inlusive) is not ontained in T . (Note that the subpath of p from ei to ti onsists of a singlevertex in ase ei = ti)The paths p that we are interested in are pedigrees, and we will refer to (p) as a ompressed pedigree. Itfollows from our de�nitions that given a ompressed representation  there is a unique path p in the DAGsuh  = (p). Reall that e(u) is the e�etive depth of a vertex u (see Setion 1.2.2). The following lemmabounds the length of a ompressed pedigree.Lemma 5.1 Let p be a path from the root of the DAG to u. The length of (p) is O(e(u)).Proof: Let R(u) be the set of paths from the root of the DAG to u. We prove that j(p)j = O(log(jR(u)j)).The lemma then follows by the de�nition of e(u).What we atually prove is that the level of u, `(u) � log(jR(u)j), as (p) � 2`(u) this implies the theorem.This proof is by indution on `(u). For u suh that `(u) = 0, jR(u)j = 1. This follows beause if therewere � 2 di�erent paths from r to u then u must have had two predeessors of level � 0 whih implies thatthe level of u � 1.Consider a vertex u with `(u) = i � 1, one of two onditions must hold (1) it has � 2 predeessorsv1; v2; : : : of level i� 1 or (2) it has exatly one predeessor of level i. In ase (1) the number of paths fromr to u is � jR(v1)j+ jR(v2)j. By indution, this gives jR(u)j � 2`(v1) +2`(v2) = 2`(u) as required. In ase (2)onsider the root of the tree in F ontaining u. This root, ru, also has level `(u) and obeys ondition (1).Thus jR(u)j � jR(ru)j � 2`(u). 221
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value of a �eld A in w. In order to do so, we want to �nd the value assoiated with p(A;w), the assignmentpedigree of A in w. For that we need to solve the Pedigree Maximum Pre�x Problem, using (q) rather thanusing q as we do in the full path method. Our �rst goal is to represent all assignment pedigrees, P (A; f),suh that we an identify p(A;w) among them in time roughly proportional to j(q)j rather than proportionalto jqj as in the full path method. We will denote by C(A; f) the set of ompressed representations of theassignment pedigrees in P (A; f).In the full path method we identi�ed p(A;w) by searhing through a trie representing the set P (A; f). Inontrast, it is impossible to identify p(A;w) by searhing through a trie representing C(A; f). This followsbeause we annot tell whih of p1, p2, if any, is a pre�x of the other, when only (p1) =< e1; t1; : : : ; ek; tk >,and (p2) =< e01; t01; : : : ; e0k; t0k > are given. Clearly, a neessary (but not suÆient) ondition that one is apre�x of the other is that for all 1 � i � k � 1, ei = e0i, ti = t0i, and ek = e0k. To determine if one is a pre�xof the other we need to know the anestor relationship between tk and t0k in the unique tree T 2 F suh thatek; tk; t0k 2 T . We next show how to use our partition of the DAG into trees together with the navigationmehanizm of the fat node method of DSST, to represent C(A; f) suh that it is possible to identify p(A;w)using (q).Given a path p suh that (p) =< e1; t1; e2; t2; : : : ; ej ; tj > we de�ne the index of p as ~(p) =<e1; t1; e2; t2; : : : ; ej >. In other words, ~(p) ontains the �rst j�1 pairs of (p) and the �rst omponent of thelast pair. For example, in Figure 6 the ompressed representation of q, (q) =< e1; t1; e2; t2; e3; t3; e4; t4 >whereas the index of q, ~(q) =< e1; t1; e2; t2; e3; t3; e4 >. Let ~C(A; f) be the set of all indexes of pedigrees inP (A; f), i.e. ~C(A; f) = f~(p) j p 2 P (A; f)g. E.g., in Figure 7 we have ~C(A; f) = f< e1 >;< e1; t1; e2 >;<e1; t1; e2; t2; e3 >;< e1; t01; : : : ; e2 >g.Let S be the set of pedigrees whose index is ~ 2 ~C(A; f). (For example, if we take ~ =< e1; t1; e2 >in Figure 7, then there are two pedigrees in S | assignment pedigree 2 and assignment pedigree 4). Let~ =< e1; t1; : : : ; ek >, and let r denote the path in the DAG from e1 through t1; e2; t2; : : : ; ek�1; tk�1 to ek.Let O(~) be an orale that when given a ompressed pedigree (q) suh that ~ is a pre�x of (q) it returnsone of the followings.1. If S ontains a pedigree whih is a pre�x of q then O(~) returns the value assoiated with the longestpre�x of q ontained in S.2. If S does not ontain a pre�x of q then O(~) returns the value assoiated with the longest pre�x of rin P (A; f).We will show below how to implement suh an orale using the methods of DSST (see Setion 3).Assume suh an orale exists for every index. Given a ompressed pedigree  = (q) for a node w it is nowstraightforward how to use these orales to �nd the value assoiated with the assignment pedigree pedigreeof A in w.We �rst �nd the longest index ~ 2 ~C(A; f) whih is a pre�x of (q). One we have identi�ed ~, the oraleO(~) will give us the right value when queried with (q). To �nd the longest index ~ 2 ~C(A; f) whih is apre�x of (q) we use a trie representing all the indies in ~C(A; f). We represent this trie as desribed inSetion 4.4.It remains to show how to implement an orale O(~). Reall that ~ =< e1; t1; : : : ; ek >, and let T be thetree ontaining ek. Given (q) = ~ jj < tk; : : : ; > the orale O(~) has to determine whether there is a pathin S that ends at an anestor of tk in T . If there is at least one suh path the orale also has to return thevalue assoiated with the longest of them. If there is no suh path then the orale has to return the valueassoiated with the longest pre�x of r, the path orresponding to ~.25
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The orale O(~) maintains a list of pairs L(~) eah onsisting of the last vertex of p 2 S and theorresponding �eld value. For example, in Figure 7, the list L(~), ~ =< e1; t1; e2 > ontains the pairs(t02; 5) and (t002 ; 11). The �rst pair orresponds to assignment pedigree 2 and the seond pair orresponds toassignment pedigree 4.If r 2 S then L(~) ontains a pair whose �rst omponent is ek, the last version on ~. Otherwise we add toL(~) a pair, (ek; N) where N is the value assoiated with the longest pre�x of r in P (A; f). Suh a pre�x isguaranteed to exist as the �eld A gets an initial value whenever a node is alloated. To give an example, inFigure 7, for ~ =< e1; t1; e2 >, we add a pair (e2; 3) to L(~) sine 3 is the value assoiated with assignmentpedigree 1, the longest pre�x of the path de�ned by ~ in P (A; f).Let T be the tree ontaining ek { the last version of ~, and let tk 2 T be the exit version of the querypath (q) from T . The orale O(~), has to return the value assoiated with the version in L(~) whih is thelosest anestor of tk. This is exatly the problem DSST solve in order to �nd the right �eld value in theirfully persistent data strutures (see Setion 3).We represent eah list L(~) as DSST represent the set of �eld values in eah �eld of their fat nodes. Foreah tree T 2 F we maintain a linear order onsistent with a preorder traversal of T as DSST do for theirversion tree. Note that this linear order is maintained one per tree T but we use it to maintain all lists L(~)suh that the last vertex of ~ is in T . The pairs in every list L(~) are ordered aording to the linear orderon T { the tree that ontains the last vertex w on ~.12Example. We now demonstrate the proess of retrieving a �eld value using Figures 6 and 7. Suppose wewant to �nd the value assoiated with �eld A in a node whose identi�er is (q; s(f)) where q is shown inFigure 6 and (q) =< e1; t1; e2; t2; e3; t3; e4; t4 >. The assignment pedigrees of �eld A in f are shown inFigure 7. The �rst stage of the algorithm is to identify the longest pre�x in ~C(A; f) that is a pre�x of (q).In our example this index is ~ =< e1; t1; e2; t2; e3 >.Among all the assignment pedigrees of �eld A in f only assignment pedigree 3 has the index ~. Thereforethe list of values maintained by the orale assoiated with ~, L(~), ontains the pair (t03; 7). Sine the path porresponding to ~, is not an assignment pedigree of �eld A (i.e., , p 62 P (A; f)), the list L(~) also ontainsthe pair (e3; 5). This is beause 5 is the value assoiated with assignment pedigree 2 whih is the longestpre�x in P (A; f) of the path p.Upon reeiving the query (q) and assuming that t3 shown in Figure 6 is not a desendant of t03 shownin Figure 7, the orale returns the value 5 assoiated with e3. This is beause among the versions e3 and t03that have values assoiated with them in L(~), e3 is the only one that is an anestor of t3 { the exit versionof (q) from T . The value assoiated with assignment pedigree 2 is indeed the right value of �eld A in thenode identi�ed by (q; s(f)).Retrieving values of Pointer Fields. As in the full path method in order to �nd the value of a data �eldA in node w it suÆes to solve an instane of the Pedigree Maximum Pre�x Problem in order to �nd thevalue assoiated with p(A;w), whih is also the value of �eld A in w. However for a pointer �eld �nding thevalue assoiated with p(A;w) is only the �rst stage. One we have this value we need to replae a pre�x ofthe pedigree of w to obtain the pedigree of the target node.Let (q =< q1; : : : ; qk >; s(f)) be the identi�er of w, and let the assignment pedigree of pointer �eld A inw be p(A;w) =< q0; q1; : : : ; qj >. The value stored with the assignment pedigree p(A;w) is a representation((p); f 0) of a node (identi�ed by (p; s(f 0))) to whih the node (p(A;w); s(f)) points. A shown in Setion 4the representation of the node to whih �eld A in w is (q0; f 0) where q0 is obtained from q by substituting p for12DSST in fat maintain some additional version-value pairs in L(~) in order to return the right value. Eah assignmentpedigree may add to L(~) at most two version-value pairs. For the preise detail see [10℄.26
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p(A;w) in q. Here we have to show how to obtain (q0) from (q) and (p). Let (q) =< e1; t1; : : : ; em; tm >and let (p) =< e01; t01; : : : ; e0n; t0n >.Reall that p, and p(A;w) must end at the same vertex as they are pedigrees of two nodes at the sameversion. Let k be the maximal index suh that p(A;w) = e1; : : : ; ek; : : :, (k = m or ek+1 =2 p(A;w)), then t0n,the last vertex of p and p(A;w), must be on the path from ek to tk. It is now easy to see that one an obtain(q0) by replaing the pre�x of (q) up to and inluding ek with the pre�x of p ontaining all of p exept thelast vertex. See Figure 8.5.2 Simulating updatesAs in the full path method, when we reate a new version v from versions v1; : : : ; vk we initialize v to be adisjoint union of v1; : : : ; vk. We perform this initialization by taking eah aess pointer ((p); f) to one ofv1; : : : ; vk augmenting it to ((p jj < v >); f) and taking all these augmented aess pointer as the aesspointers to v. Note that (p jj < v >) = (< e1; t1; : : : ; ek; tk > k < v >) is either (p) jj < v; v >=<e1; t1; : : : ; ek; tk; v; v > if v is in a di�erent tree from tk, or < e1; t1; : : : ; ek; v > if v is in the same tree as tk.Next we simulate the sequene of �eld retrievals and assignments performed while produing v ephemer-ally. We simulate �eld retrieval as desribed in Setion 5.1. We simulate an assignment of a �eld value Nto �eld A in a node w as follows. Note that if A is a data �eld then N is simply a value of the appropriatedata type. If A is a pointer �eld then N is the representation (0; f 0) of the target node w0 in version v (theidenti�er for w0 is (p0; s(f 0)), 0 = (p0)).Let ((q) < e1; t1; : : : ; ek; tk >; f), tk = v, be the representation of w. We searh for ~(q) =< e1; t1; : : : ; ek >,in the trie representing ~C(A; f). If found, then we add the pair (tk = v;N) to the DSST struture for ~(q).If ~(q) is not in the trie, then we reate a new DSST struture for ~(q) and initialize it by adding the pair(ek; N 0) where N 0 is the old value of the �eld A in node w of version v (before the urrent assignment), thisrequires that we apply the �eld retrieval algorithm desribed in Setion 5.1. Finally, we add the pair (v;N)to the newly reated DSST struture.5.3 Implementation and analysisFor every �eld A, we represent the set ~C(A; f) in a trie, analogous to the trie used to represent P (A; f) inthe full path method (Setion 4). With every index ~ in the trie we assoiate a pointer to the DSST struturefor L(~). We argue that with this representation a �eld retrieval and an assignment at version v both requireO(e(v) + logF) time. Furthermore an assignment requires O(e(v)) words.To retrieve the value of �eld A in a node w whose ompressed pedigree is  we �rst �nd the valueassoiated with the assignment pedigree of �eld A in w. This requires one searh in the trie representing~C(A; f) to identify the longest index ~ whih is a pre�x of , followed by a searh in the DSST strutureassoiated with ~. Searhing the trie takes O(jj + logF) time (See Setion 4.4). Searhing the assoiatedDSST data struture takes time O(log jL(~)j). Sine the ardinality of the list L(~) is bounded by F weobtain that the searh in L(~) takes O(logF) time. Thus, ounting both the searh in the trie and the searhin the appropriate DSST data struture we obtain that retrieving the value assoiated with the assignmentpedigree of �eld A in node w whose ompressed pedigree is  takes O(jj + logF) time. Notie that if wbelongs to version v then  is a ompressed representation of a path in the DAG ending at v and thereforejj = O(e(v)). So the time bound for retrieving the value assoiated with the assignment pedigree of any�eld in a node w of version v is O(e(v) + logF).If A is a data �eld then the value we found is the value of �eld A in w. If A is a pointer �eld then to28
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omplete the �eld retrieval we have to perform Pedigree Pre�x Substitution. Sine the pedigrees before andafter substitution are pedigrees of nodes in version v the length of eah of them is O(e(v)) so the time it takesto perform Pedigree Pre�x Substitution is O(e(v)). To summarize we obtain that both for pointer �elds andfor data �elds the time it takes to retrieve the value of the �eld in a node of version v is O(e(v) + logF).Next we analyze the time and spae needed to simulate an assignment. Assume that we perform anassignment of value N to �eld A of node w in version v. Let  =< e1; t1; : : : ; ek; tk > be the ompressedpedigree of w. To simulate the assignment we �rst searh the trie to see whether it ontains ~. This searhtakes O(j~j + logF) = O(e(v) + logF) time. If the trie does not ontain ~ then we add ~ to the trie. Thisupdate to the trie takes O(e(v) + logF) time and O(j~j) = O(e(v)) spae. If ~ is not in the trie then wealso have to reate a new DSST data struture for it and initialize it with a pair (ek; N 0) where N 0 is theold value of the �eld in version v. It takes O(1) time to initialize a new DSST data struture. But to loateN 0 we use our �eld retrieval algorithm so it takes O(e(v) + logF) time. Finally we have to add a pair(v;N) to the DSST struture of ~ whih takes O(logF) time. Summing up we obtain that assignment takesO(e(v) + logF) time and onsumes O(e(v)) spae.Theorem 5.1 Using the Compressed Path Method one obtains a onuently persistent emulation of anephemeral data struture with the following performane during an aess or update operation on version v.1. The spae onsumption per assignment is O(e(v)) words (eah onsisting of O(log(U)) bits13.2. Simulation of a retrieval of a �eld value takes O(e(v) + logF) time.3. Simulation of an assignment takes O(e(v) + logF) time.Same remarks (similar to those following Theorem 4.1):Remark.1. Note that the bounds spei�ed in Theorem 5.1 are a re�nement of the bounds given in Table 1. Thisis sine F = O(U), and e(v) � e(D) for every vertex v.2. If we represent the tries with regular searh tree at eah node then the time bounds obtained areO(je(v)j log(jV j)) for �eld retrieval and assignment.6 Hashing the Tries via Balaned Searh TreesIn this setion we show how to improve the running time of the full path method and the ompressed pathmethod. We obtain an exponential speedup whih omes at two osts. First, we have to use randomization sowe obtain a data struture that enodes orretly the olletion versions with very high probability. Seond,the spae onsumption of the improved data strutures inrease. Reall that the full path method and theompressed path method require O(d(v)) and O(e(v)) words of length O(log jV j) respetively per assignment.Here we need O(d(v)) and O(e(v)) words of length O(log T ) bits per assignment, respetively. We reallthat T denotes the total number of �eld retrievals.14We desribe our results as if T is known in advane. When T is not known in advane we an use astandard tehnique of guessing an initial T and rebuilding the whole data struture whenever T grows by afator of two.13As in the full path method by ompressing the tries we an redue this spae requirement to O(e(v) log jV j+ logU) bits.)14This is only an inrease by a onstant fator if the number of �eld retrievals is polynomial in the number of versions.29
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The struture of this setion is as follows. We start by desribing a representation of sets of integersequenes that may be of independent interest. If the sums of the integers in subsequenes satisfy a partiularuniqueness ondition then our representation allows to eÆiently �nd the longest pre�x of a query sequeneontained in a set. Setion 6.1 desribes a simple representation of a single integer sequene using red-blaktrees. Setion 6.2 desribes the representation of sets of suh sequenes. In Setion 6.3 we show how toonvert pedigrees into integer sequenes satisfying the requirements using randomization. Then we desribehow to obtain our improved onuently persistent shemes by representing sets of assignment pedigrees asdesribed in Setion 6.2.6.1 Representing Sequenes of IntegersIn this setion we desribe a straightforward representation of sequenes of integers that supports the fol-lowing operations.1. sum(�): Computes the sum of the integers in the sequene �.2. split(�; i): Splits the sequene � into two sequenes �1 and �2. Sequene �1 ontain the �rst i elementsin � and sequene �2 ontains the following j�j � i elements of �.3. atenate(�1; �2): Return a sequene � that is the onatenation of the sequenes �1 and �2.We represent eah sequene by a balaned binary searh tree, suh as a red blak tree. The elements ofsequene are stored at the leaves of the tree from left to right. Eah internal node v ontains 1) a ounter, n(v),of the number of leaves in its subtree, and 2) the sum, s(v), of the integers stored at the leaves of its subtree.Figure 9 shows an example of a tree representing the integer sequene < 10; 3; 5; 12; 8; 32; 7; 23; 15; 6>.We perform sum(�) by returning s(r) where r is the root of the tree representing �. Note that there areno expliit searh keys as one would have in a typial red-blak trees. Rather, the searh for an item with apartiular index is guided by the ounters n(u). The \missing" key of an internal node v is the index of therightmost element in the left subtree of v. This index is equal to the sum of the n-values of the left hildrenof the nodes along the path from the root to v (where we assume that a leaf has an n-value of 1). Thereforewe an ompute the key of node v on the y while traversing the path from the root to v. Furthermore wenotie that the values of n(v) and s(v) an be maintained through rotations (in onstant time per rotation).Figure 10 shows the required updates to these values when we do a rotation. It thus follows that we anperform split and atenate using the standard implementations of split and atenate for red-blak trees [27℄.Assume a model of omputation where the sum of the integers in a sequene �ts into O(1) omputer words,and operations on a single word ost O(1) time. In this model, the time omplexity of sum(�) is O(1), thetime omplexity of split(�; i) is log(j�j) and the time omplexity of atenate(�1; �2) is log(max(j�1j; j�2j)).6.2 Loating the Longest Pre�x in a Set of Integer SequenesIn this setion we show how to eÆiently maintain a set � of integer sequenes subjet to the following twooperations.1. Add a new sequene � to �, � is not a pre�x of any other sequene in �.2. Given a query sequene � , �nd the longest pre�x of � in �.Our algorithm works subjet to the assumption that � and the query sequene satisfy the unique sumsondition, that is de�ned below, at all times. 30
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To de�ne the unique sums ondition and to speify our algorithm we need the following de�nitions. Foran integer sequene � let pi(�), 1 � i � �, be the pre�x of � of length i. Let m(�) be the number of 1's inthe binary representation of j�j. We de�ne i1; i2; : : : ; im(�) to be the sequene of lengths where the binaryrepresentation of ij , 1 � j � m(�), is derived from the binary representation of j�j by setting the m(�) � jrightmost 1's to 0. Note that im(�) = j�j. Last we de�ne �̂ = fpi1(�); pi2(�); pi3 (�); : : : pim(�) (�) = �g, andb� = [�2��̂. The followings are easy onsequenes of our de�nitions.1. For any 1 � j � m(�), dpij (�) � �̂.2. � � b�.Example: Let � =< �1; �2; �3; : : : ; �298 >. The binary representation of 298 is 100101010. Therefore, theset of sequenes �̂ ontains the pre�xes of � with lengths i1 = 1000000002 = 25610, i2 = 1001000002 = 28810,i3 = 1001010002 = 29610, i4 = 1001010102 = 29810. Given �0 =< �01; �02; : : : ; �017 >, the set of sequenes�̂0 ontains p16(�0) and p17(�0). Let � = p272(�) =< �1; �2; : : : ; �272 >, it follows that �̂ = f�; p256(�) =p256(�)g. If � = f�; �0; �g then b� = fp256(�); p288(�); p296(�); p298(�)gSfp16(�0); p17(�0)gSf�; p256(�)g.We say that the unique sums ondition is satis�ed if the following two onditions holds.1. For every �; � 0 2 b�, suh that � 6= � 0, sum(�) 6= sum(� 0).2. For any pre�x � 0 of a query sequene � , and for any � 2 b� where � 0 6= �, sum(� 0) 6= sum(�).To answer longest pre�x queries we maintain a hash table H to whih we hash the values in the setfsum(�) j � 2 b�g. The entry assoiated with sum(�) points to the longest pre�x � of � , where � 2 � if suh� exists, and points to null otherwise. Note that � = � if � 2 �.Example: Assoiated with sum(P288(�)), sum(P296(�)), and sum(�) is the string �. Assoiated withsum(P298(�)) = sum(�) is the string �.Integer Sequene Longest Pre�x Algorithm:Given a query sequene � we �rst identify � 0 whih is the longest pre�x of � in b�. If � 0 exists and it hasa pre�x in � then we return the longest pre�x � 2 � of � 0. (We in fat identify the entry of sum(� 0) in H .The sequene � is pointed by this entry.) If there is no suh � 0 or � 0 exists but it has no pre�x in � thenthere is no pre�x of � in �.Assuming we an identify � 0 orretly then our algorithm must return the right answer by the de�nitionof H and the fat that � � b�.We identify � 0 as follows. Consider the set �̂ = fpi1(�); pi2 (�); pi3 (�); : : : pim(�) (�)g. We searh for theminimum j, 1 � j � m(�), suh that sum(pij (�)) is not stored in the hash table H . If there is no suh jthen sum(�) itself is stored in the hash table H so � 0 = � . If j exists, then the rest of the algorithm is basedupon the following lemma.Lemma 6.1 Assume � 62 b� and let j be the minimum suh that sum(pij (�)) is not stored in the hash tableH. Then the longest pre�x � 0 of � in b� has length, ij�1 � j� 0j < ij , where we de�ne i0 = 0.Proof: Assume there is a pre�x � 0 2 b� of � suh that j� 0j � ij . Clearly ij � j� 0j � j� j. Reall that thebinary representation of ij is the same as the binary representation of j� j with the m� j rightmost ones setto zero. Let b be the index of the (m� j)th one in the binary representation of j� j (ounting from the right).It follows that the binary representation of ij is of the form �k0b whereas the binary representation of � is32
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of the form �k�, j�j = b. As ij � j�j < j� j, the binary representation of j�j must be of the form �k, jj = b,where 0 �  � �. Therefore, Pij (�) = Pij (� 0) 2 �̂ 0 � b�, so sum(pij (�)) 2 H , ontraditing the de�nition ofj. 2By lemma 6.1 we now know that the longest pre�x � 0 of � in b� is suh that j� 0j < ij . Let k be the integersuh that ij � ij�1 = 2k (de�ne i0 = 0 if j = 1). We identify � 0 using the following proedure.\Binary Searh" Proedure:1. Set Æ = 2k�1.2. for � = k � 1 downto 1:� If sum(pij�1+Æ(�)) is in H set Æ = Æ + 2��1, otherwise Æ = Æ � 2��1.3. If sum(pij�1+Æ(�)) is in H return Æ. Otherwise return Æ � 1.The following lemma shows that the binary searh proedure above ends with the maximum 0 � Æ < 2ksuh that sum(pij�1+Æ(�)) is stored in the hash table H .Lemma 6.2 At the end of the \binary searh" proedure de�ned above, the longest pre�x of � in b�, (whoselength is < ij), is pij�1+Æ(�).Proof: We prove by indution that the following invariant holds.Invariant 6.1 Before eah iteration of the loop de�ned in step (2) of the \binary searh" proedure aboveand before step (3) we are guaranteed that the length of the longest pre�x � 0 of � in b� satis�es ij�1+Æ�2� �j� 0j � ij�1 + Æ + 2� � 1.>From this invariant and the de�nition of step (3) the lemma follows sine we know that pij�1(�) 2 b�.The invariant holds before the �rst iteration of the loop de�ned by step (2) sine we know that pij�1 (�) 2 b�and pij (�) =2 b�, so from lemma 6.1 we know that the longest pre�x of � in b� has length < ij and � ij�1.It is straightforward to establish the indution step using the following two observations:1. The unique sums ondition implies that if sum(Pr(�)) is in H , then Pr(�) is in bP , and the longestpre�x of � in bP has length � r.2. In general, it is not true that if sum(Pr(�)) is not in H then neither is sum(Pr0(�)) for r0 > r. This isthe reason we plae the \binary searh" in parenthesis. However, a slightly weaker statement is trueand suÆes to establish the indution step. If sum(Pr(�)) is not in H , and the binary representationof r has b low order zeros then we know that for every r0 in the range r � r0 � r+2b� 1, sum(Pr0(�))is not in H . This follows from the de�nition of b�. 2The orretness of our query algorithm stated in the following theorem now follows from the de�nitionof H , Lemma 6.1, and Lemma 6.2.Theorem 6.1 For any � and b� satisfying the unique sums ondition, the integer sequene longest pre�xalgorithm returns the longest pre�x of � in �. 33
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6.2.1 Adding a Sequene to �.To add a new sequene � to �, we insert the values sum(� 0), � 0 2 �̂ , to the table H , if they are not alreadythere. When adding a new entry � 0 to H , we ompute (using the query algorithm desribed above) thelongest pre�x of � 0 in �, and store a pointer to a representation of this sequene.Note that � is not a pre�x of any previous sequene is �, by assumption, so the addition of � does nothange the longest pre�x (in �) for any sequene in b�.6.2.2 Implementation and Analysis.We assume that eah integer sequene is represented using a binary searh tree as desribed in Setion6.1, where eah sum of a subsequenes �ts into O(1) omputer words. We also assume that the hash tableontaining the sums of the sequenes in �̂ is maintained using Dynami Perfet Hashing [7℄. Dynami PerfetHashing allows to test whether a partiular sum is in the table in O(1) worst-ase time and to insert a newsum into the table in O(1) amortized expeted time. The size of the table is proportional to the number ofelements in it that is O(�̂).To �nd the longest pre�x in � of a query sequene � we ompute O(log j� j) sums of sequenes in �̂ andanother O(log j� j) sums of sequenes onsidered in the binary searh phase. All these sequenes are pre�xesof � so we an ompute the sum of eah suh sequene by splitting � at the appropriate length. Thusthe omputation of eah suh sum takes O(log j� j) time, and the omputation of all O(log j� j) sums takesO(log2(j� j)) time. Probing the hash table for eah sum takes O(1) time so the total query time is dominatedby the omputation of the sums and takes O(log2(j� j)) worst ase time.To insert a new sequene, � , into �, we need to repeat the following for eah of the O(log j� j) sequenesin � 0 2 �̂ .1. Compute sum(� 0), this takes time O(log j� j) as we need to split the tree of � at the appropriate length(j� 0j).2. If � 0 6= � and sum(� 0) =2 H : searh for the the longest pre�x � 2 � of � 0, this takes time O(log2(j� 0j)).In total, this time required to insert � into � is O(log3(j� j)). This time bound is expeted and amortizedsine we use dynami perfet hashing.Remark. At the ost of a fator of O(log �̂) in the time per query and the time per insertion we anavoid using dynami perfet hashing, and use some kind of a balaned searh tree to represent the setfsum(�) j � 2 �̂g. All time bounds with this implementation are worst-ase.6.3 Speeding up the Full Path Method and the Compressed Path Method viaRandomizationIn this setion we show how to use our representation for integer sequenes from Setion 6.2 to speedup both the full path method and the ompressed path method. The algorithm whih we desribe israndomized and simulates retrieval and assignment in time polylogarithmi in d(D) for the full path methodand polylogarithmi in e(D) for the ompressed path method. Note that to ahieve suh a bound we needto solve the Pedigree Maximum Pre�x Problem without traversing the Pedigree itself. The key idea is tomap pedigrees into integer sequenes whih satisfy the unique sums ondition with high probability. Thenwe use our representation from Setion 6.2 to represent the pedigrees in P (A; f) in the full path method orthe indies in ~C(A; f) in the ompressed path method. We �rst desribe the details of applying this idea tothe full path method. 34
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To map pedigrees into integer sequenes that satisfy the unique sums ondition we randomly hoosefor every version v in the DAG a large random number r(v) 2 f0; : : : ; Rg. We map a pedigree q =<q0; q1; : : : ; qj > to the integer sequene r(p) =< r(q0); r(q1); : : : ; r(qj) >. We all r(p) the randomizedpedigree orresponding to p. The following lemma shows that if R is large enough then the unique sumsondition holds with respet to all pedigrees aessed during the omputation.Lemma 6.3 Let P be the set of all pedigrees aessed during the omputation and their pre�xes. Let r(P)be the orresponding set of integer sequenes. If R = 
(jPj3) then r(P) satis�es the unique sums onditionwith probability O( 1jPj).Proof: The probability that any two partiular distint pedigrees have random pedigrees with the samesum is 1=R. Therefore the probability that at least one of the jPj randomized pedigrees aessed during theomputation will have the same sum is at most �jPj2 � 1R and the lemma follows. 2Notie that if T is the number of �eld retrievals then jPj = O(T � jV j) = O(T 2). Therefore to guaranteethe unique sums ondition with high probability it suÆes to use random integers of O(log T ) bits.To speed up the full path method we modify it to use randomized pedigrees rather than the pedigreesthemselves. We represent eah randomized pedigree as in Setion 6.1 and use the pair (r(q); f) to representa node whose identi�er is (q; s(f)). We de�ne R(A; f) = fr(p) j p 2 P (A; f)g and represent P (A; f) by ahash table storing the set of sequenes R(A; f) as desribed in Setion 6.2.Reall that the hash table representing R(A; f) ontains an entry for eah integer sum(�) where � 2dR(A; f). The entry of sum(�), � 2 dR(A; f) stores the longest pre�x � of � in R(A; f). Let p be theassignment pedigree that orresponds to � in P (A; f). If A is a data �eld we store with � the value of Ain the node (p; s(f)). If A is a pointer �eld than we store with � the representation (r(p0); f 0) of the nodewhose address is stored in �eld A of the node (p; s(f)).Let w be a node represented by the pair (q; f). Reall that in order to retrieve a value of a �eld A inthe node w we solve an instane of the Pedigree Maximum Pre�x Problem to loate the longest pre�x ofq in the set P (A; f). To solve the Pedigree Maximum Pre�x Problem with our modi�ed data struture weuse the integer sequene longest pre�x algorithm of Setion 6.2. Using this algorithm we loate the longestpre�x of the integer sequene r(q) in R(A; f). This pre�x is the integer sequene whih orresponds to theassignment pedigree p(A;w).If A is a data �eld one we �nd r(p(A;w)) then the value assoiated with it is the value of �eld A inw. However if A is a pointer �eld then to obtain the representation of the target node we need to performPedigree Pre�x Substitution. The value assoiated with r(p(A;w)) is a pair (r(p0); f). To obtain the valueof A in w we need to replae r(p(A;w)) by r(p0) in r(q) (the randomized pedigree of w).We an perform Pedigree Pre�x Substitution by performing (r1; r2) = split(r(q); i) where i = jr(p(A;w))jand onatenating r(p0) to r2. This however destroys r(p0) whih has to stay intat in the representation ofR(A; f) and maybe in other plaes in our data struture. On the other hand, opying r(p0) entirely beforethe onatenation would take 
(jr(p0)j) time and does not improve our original full path method.Using onuently persistent red/blak trees.To overome this diÆulty and support Pedigree Pre�x Substitution eÆiently we use onuently per-sistent red-blak trees to represent the randomized pedigrees. We make red-blak trees persistent using thepath opying method desribed in DSST. Aording to this method we perform split and onatenation aswe would have in a non-persistent red-blak tree exept that we dupliate any node whih hanges duringthe operation. Reall that while splitting or onatenating red-blak trees only O(log k) of the nodes hange35
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where k is the number of leaves of the tree. Therefore by path opying we obtain onuently persistentred-blak trees suh that eah split or atenate operation runs in time logarithmi in the size of the tree.By using persistent red-blak trees to represent pedigrees and performing Pedigree Pre�x Substitutionvia splitting and onatenating the orresponding trees we obtain that the time required for Pedigree Pre�xSubstitution is O(log jV j) (The maximum length of a pedigree is jV j). However eah Pedigree Pre�x Substi-tution also requires O(log jV j) new nodes. This seemingly makes the spae utilization of our data struturedepend not only on the number of assignments but also on the number of retrievals of values of pointer �elds.Improving the spae required for traversal.A pointer retrieval requires O(log jV j) spae for path opying. This spae is alloated to onstrut therepresentation the target node, say w. Notie that if the representation of w (or the representation of anyother node obtained by splitting and onatenating piees of the pedigree of w) is not used as the value ofa subsequent assignment to a pointer �eld, then when we �nish the update operation we an free the nodesalloated spei�ally for the representation of w.In general, we an lassify eah node alloated while retrieving the value of a pointer �eld as eithertemporary or permanent . We say that a node alloated during a retrieval of a pointer �eld is permanent ifit is used in the representation of a node that is the target of a subsequent assignment into a pointer �eld.All other nodes alloated during assignments to pointer �elds are lassi�ed as temporary. We an releasetemporary nodes when the update operation is over and the new version is omplete. This without damagingthe new or any already existing version. We assoiate eah permanent node with an assignment operationthat use it in the representation of its value, and harge that node to this assignment.Keeping trak of whih nodes are permanent and whih are temporary is a nontrivial task. When weare not in middle of an update operation then permanent pedigree-nodes are those pedigree-nodes that areeither reahable from one of our fat nodes (and the tables representing its �elds), or nodes that are used torepresent an aess pointer. When we are in the middle of an update operation we would also onsider aspermanent those pedigree-nodes whih are reahable from representations of nodes that the update operationurrently holds pointers to.In ase we implement our data struture in an environment that has a garbage olletor then the garbageolletor automatially would free the temporary nodes. This is beause a permanent node is always reahablefrom some live variable of our program. Temporary nodes on the other hand should beome unreahablewhen the randomized pedigrees ontaining them are not needed anymore. However, while using a automatigarbage olletion mehanism may be onvenient, we have no means to bound the time spent by this proess.To justify our time bounds for the data strutures, we must onsider all resoures used inluding those forgarbage olletion. We next onsider expliit garbage olletion and its assoiated osts.Expliit Garbage Colletion.As before, we distinguish between alloations of fat nodes (whih are never released) and alloations ofnodes required for path opying when retrieving values of pointer �elds.While performing an update operation generating a new version, we assume that all nodes alloatedfor path opying an be easily identi�ed when the update operation is over. We an ahieve this by eithermaintaining a linked list of pointers to these nodes or by alloating these nodes from a ontiguous pool ofstorage. When a node is alloated we mark it \temporary"15. While simulating the update operation wemaintain a list L of pointers to all randomized pedigrees that were stored as part of the representation oftarget nodes of assignment operations.15we assume eah node has an additional mark bit for garbage olletion purposes.36
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When the update operation is over we traverse all of the pedigrees in L as follows. While traversing apedigree we maintain a queue of nodes yet to be traversed. We start by inserting the root of the tree intothe queue. Eah traversal step we extrat a node z from the queue, hange the mark of z from \temporary"to \permanent" and add to the queue every hild of z whih is marked \temporary".When we �nish traversing all the randomized pedigrees in L we traverse all nodes that were alloatedfor path opying during the update operation and free those whih are still marked \temporary". We retainnodes whih hanged their marks to \permanent".16To establish the orretness of this method to release temporary nodes we observe that all permanentnodes indeed get marked by the above traversal. This follows from our use of path opying as the methodfor obtaining persistent searh trees. It is straightforward to prove by indution that with path opying eahnewly alloated node is reahable by a path of newly alloated nodes from the roots of all the pedigreesontaining it. The node is permanent if at least one of these pedigrees is stored as part of the value of anassignment operation.The running time of this garbage olletion proedure is proportional to the number of nodes alloated forpath opying. To see this note that eah suh node is added to the queue used for traversing the randomizedpedigrees in L at most one and it takes O(1) time to traverse a node. Thus this garbage olletion phaseinreases the overall running time of the update operation by no more than a onstant fator.Summary.The following theorem summarizes the performane of the randomized full path method.Theorem 6.2 Let T be the total number of �eld retrievals as de�ned in Setion 1.2. The randomized fullpath method gives a onuently persistent data struture with the following performane. Let v be the versionaessed or reated by the operation.1. The worst ase spae onsumption per assignment is O(d(v) log TlogU ) words of �(logU) bits eah.2. The worst ase time per �eld retrieval is O(log2(d(v)) � log TlogU ).3. The expeted amortized time for an assignment is O(log3(d(v)) � log TlogU ).Remarks.1. The time bounds for �eld retrieval are on the worst ase.2. The time for assignment is \expeted amortized" due to our use of dynami perfet hashing, it is alsoamortized for assignment beause we may need to store more data than this time allows, we hargethe time required to store this data against the time spent on previous retrievals.3. In addition, we require a garbage olletion phase at the end of any update step. The ost of thisgarbage olletion is also harged to the time spent on retrieval steps during the update step.4. With some polynomially small probability, the randomized full path method may give wrong results.16As an alternative mehanism for garbage olletion we note the following. If the nodes alloated for path opying duringthe update operation are alloated from a ontiguous pool of storage we an \squeeze" the permanent nodes so they oupy aontiguous blok of storage. To do so we have to hange all the pointers to these permanent nodes. Pointers to permanent nodeswhih are internal in all pedigrees ontaining them are loated in other permanent nodes. Pointers to the roots of the pedigreesin L are loated in other plaes of the data struture whih we need to keep trak of. The number of suh plaes is bounded bythe number of �elds to whih the update operation assigned values. After this \squeezing", the release of temporary nodes istrivial and does not require traversing all new nodes alloated.37
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We an apply the same tehnique to the ompressed path method. For every �eld A in a fat node fwe represent eah index ~ 2 ~C(A; f) by the sequene of random integers, r(~), obtained by replaing eahversion in ~ by its assoiated random integer. Then we represent the set fr(~) j ~ 2 ~C(A; f)g as desribed inSetion 6.2. The value assoiated with the sequene r(~) is a list L(~) as in the ompressed path method. Thefollowing theorem summarizes the performane of the onuently persistent data struture that we obtain.Theorem 6.3 Let T be the total number of �eld retrievals as de�ned in Setion 1.2. The randomizedompressed path method gives a onuently persistent data struture with the following performane. Let vbe the version aessed or reated by the operation.1. The worst ase spae onsumption per assignment is O(e(v) log TlogU ) words of �(logU) bits eah.2. The worst ase time per �eld retrieval is O(log2(e(v)) � log TlogU ).3. The expeted amortized time for an assignment is O(log3(e(v)) � log TlogU ).The remarks following Theorem 6.2 hold here as well.7 Conluding remarksWe presented a general tehnique to transform a data struture to be onuently persistent. Our tehniqueuses a suint representation of all versions whose expliit size may be exponential in the size of the versionDAG. This exponential blowup of the version size that is possible in the onuently persistent settings makesthe trivial node opying tehnique infeasible. It is infeasible even if we don't are about persistene but onlywant to aess the �nal version. The tehniques we present in this paper are the only feasible transformationswe are aware of that an be applied to any data struture and any set of operations.The transformation we desribe is ompletely oblivious to the nature of the allowed update operationsand works the same whatever the instantiation of the DAG is. This generality of our solution makes itsubjet to the lower bound provided in Theorem 2.1 whih shows that the spae omplexity of our strutureis optimal.An interesting line for further researh would be to try and lassify general lasses of data strutures thatallow better bounds. It is at least possible that there is some transformation, that somehow adapts itself tothe atual instantiation of the DAG and beats the lower bounds given above. One interesting model thatmay be worthwhile to onsider is a weighted DAG where the weights on the edges reet what perentageof the nodes in the previous version that remain part of the data struture after the meld. A partiularlyinteresting ase is the ase of weights 1/2.Referenes[1℄ A. L. Buhsbaum and R. E. Tarjan. Conuently persistant deques via data strutural bootstrapping.J. of Algorithms, 18:513{547, 1995.[2℄ Samuel W. Bent, Daniel D. Sleator, and Robert E. Tarjan. Biased searh trees. SIAM Journal onComputing, 14(3):545{568, 1985.[3℄ B. Chazelle. How to searh in history. Information and ontrol, 64:77{99, 1985.[4℄ R. Cole. Searhing and storing similar lists. J. of Algorithms, 7:202{220, 1986.38
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